%I #16 Dec 23 2018 14:45:24
%S 8,60,532,5100,50317,501000,5003163,50010000,500031623,5000100000,
%T 50000316228,500001000000,5000003162278,50000010000000,
%U 500000031622777,5000000100000000,50000000316227767,500000001000000000,5000000003162277661,50000000010000000000
%N a(n) = A322667(n) + 1.
%C a(n) is the smallest positive integer k such that floor(k^2/10^n) - floor((k - 1)^2/10^n) = 2. The main entries are A322666 and A322667. However, some people may search for this entry.
%F a(n) = 5*10^(n-1) + ceiling(10^(n/2)) for n >= 2.
%e floor(7^2/10) = 4, floor(8^2/10) = 6, and 8 is the smallest k such that floor(k^2/10) - floor((k - 1)^2/10) = 2, so a(1) = 8.
%e floor(59^2/10) = 34, floor(60^2/10) = 36, and 60 is the smallest k such that floor(k^2/100) - floor((k - 1)^2/100) = 2, so a(2) = 60.
%o (PARI) a(n) = if(n==1, 8, 5*10^(n-1) + ceil(10^(n/2)))
%Y Cf. A017936, A322666, A322667.
%K nonn
%O 1,1
%A _Jianing Song_, Dec 22 2018