login
A317774
a(n) = A322667(n) + 1.
2
8, 60, 532, 5100, 50317, 501000, 5003163, 50010000, 500031623, 5000100000, 50000316228, 500001000000, 5000003162278, 50000010000000, 500000031622777, 5000000100000000, 50000000316227767, 500000001000000000, 5000000003162277661, 50000000010000000000
OFFSET
1,1
COMMENTS
a(n) is the smallest positive integer k such that floor(k^2/10^n) - floor((k - 1)^2/10^n) = 2. The main entries are A322666 and A322667. However, some people may search for this entry.
FORMULA
a(n) = 5*10^(n-1) + ceiling(10^(n/2)) for n >= 2.
EXAMPLE
floor(7^2/10) = 4, floor(8^2/10) = 6, and 8 is the smallest k such that floor(k^2/10) - floor((k - 1)^2/10) = 2, so a(1) = 8.
floor(59^2/10) = 34, floor(60^2/10) = 36, and 60 is the smallest k such that floor(k^2/100) - floor((k - 1)^2/100) = 2, so a(2) = 60.
PROG
(PARI) a(n) = if(n==1, 8, 5*10^(n-1) + ceil(10^(n/2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Dec 22 2018
STATUS
approved