login
A317698
The 10-adic integer a = ...580984952634 satisfying a^3 + 1 = b, b^3 + 1 = c, c^3 + 1 = d, and d^3 + 1 = a.
10
4, 3, 6, 2, 5, 9, 4, 8, 9, 0, 8, 5, 4, 7, 3, 4, 2, 7, 3, 0, 5, 0, 9, 4, 2, 3, 6, 2, 5, 9, 1, 0, 9, 2, 9, 5, 1, 8, 2, 2, 9, 4, 9, 5, 9, 5, 3, 2, 3, 5, 5, 9, 3, 2, 0, 3, 8, 4, 9, 0, 5, 5, 4, 7, 7, 5, 2, 7, 8, 0, 3, 8, 3, 3, 6, 7, 1, 5, 4, 5, 3, 7, 4, 1, 7, 0, 4, 1, 9, 5, 9, 4, 6, 4, 8, 0, 2
OFFSET
0,1
COMMENTS
There is one other automorphic cube-ring of four 10-adic integers.
LINKS
EXAMPLE
634^3 + 1 == 105 (mod 10^3), 105^3 + 1 == 626 (mod 10^3), 626^3 + 1 == 377 (mod 10^3), and 377^3 + 1 == 634 (mod 10^3), so the sequence begins 4 3 6.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick A. Thomas, Aug 20 2018
EXTENSIONS
More terms from Seiichi Manyama, Aug 24 2018
STATUS
approved