

A317698


The 10adic integer a = ...580984952634 satisfying a^3 + 1 = b, b^3 + 1 = c, c^3 + 1 = d, and d^3 + 1 = a.


10



4, 3, 6, 2, 5, 9, 4, 8, 9, 0, 8, 5, 4, 7, 3, 4, 2, 7, 3, 0, 5, 0, 9, 4, 2, 3, 6, 2, 5, 9, 1, 0, 9, 2, 9, 5, 1, 8, 2, 2, 9, 4, 9, 5, 9, 5, 3, 2, 3, 5, 5, 9, 3, 2, 0, 3, 8, 4, 9, 0, 5, 5, 4, 7, 7, 5, 2, 7, 8, 0, 3, 8, 3, 3, 6, 7, 1, 5, 4, 5, 3, 7, 4, 1, 7, 0, 4, 1, 9, 5, 9, 4, 6, 4, 8, 0, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

There is one other automorphic cubering of four 10adic integers.


LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000


EXAMPLE

634^3 + 1 == 105 (mod 10^3), 105^3 + 1 == 626 (mod 10^3), 626^3 + 1 == 377 (mod 10^3), and 377^3 + 1 == 634 (mod 10^3), so the sequence begins 4 3 6.


CROSSREFS

Cf. A318299 (b), A318300 (c), A318302 (d).
Cf. A318135, A318136, A318137, A318138, A318139, A318140.
Sequence in context: A010653 A153200 A300895 * A179103 A045814 A064218
Adjacent sequences: A317695 A317696 A317697 * A317699 A317700 A317701


KEYWORD

nonn,base


AUTHOR

Patrick A. Thomas, Aug 20 2018


EXTENSIONS

More terms from Seiichi Manyama, Aug 24 2018


STATUS

approved



