login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317677 Fixed point of a shifted hypertree transform. 5
1, 1, 4, 32, 402, 7038, 160114, 4522578, 153640590, 6132546770, 282517271694, 14812447505646, 873934551644074, 57486823088667270, 4183353479821220130, 334572221351085006242, 29242220614539638127294, 2779426070382982579163202, 286058737295150226682469518 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The hypertree transform H(a) of a sequence a is given by H(a)(n) = Sum_p n^(k-1) Prod_i a(|p_i|+1), where the sum is over all set partitions U(p_1, ..., p_k) = {1, ..., n-1}.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..305

MAPLE

b:= proc(n, k) option remember; `if`(n=0, 1/k, add(

      a(j)*b(n-j, k)*binomial(n-1, j-1)*k, j=1..n))

    end:

a:= n-> b(n-1, n):

seq(a(n), n=1..20);  # Alois P. Heinz, Aug 21 2019

MATHEMATICA

numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];

a[n_]:=a[n]=Sum[n^(Length[ptn]-1)*numSetPtnsOfType[ptn]*Product[a[s], {s, ptn}], {ptn, IntegerPartitions[n-1]}];

Array[a, 20]

CROSSREFS

Cf. A000272, A030019, A048143, A134954, A275307, A293510, A317631, A317632, A317634, A317635, A317671.

Sequence in context: A127670 A317403 A243468 * A191459 A184359 A229548

Adjacent sequences:  A317674 A317675 A317676 * A317678 A317679 A317680

KEYWORD

nonn,eigen

AUTHOR

Gus Wiseman, Aug 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 18:03 EST 2019. Contains 329809 sequences. (Running on oeis4.)