|
|
A317634
|
|
Number of caps (also clutter partitions) of clutters (connected antichains) spanning n vertices.
|
|
11
|
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
A kernel of a clutter is the restriction of the edge set to all edges contained within some connected vertex set. A clutter partition is a set partition of the edge set using kernels.
|
|
LINKS
|
Table of n, a(n) for n=0..5.
Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Gus Wiseman, All clutter partitions of non-isomorphic clutters on 4 vertices.
|
|
EXAMPLE
|
The a(3) = 9 clutter partitions:
{{{1,2,3}}}
{{{1,3},{2,3}}}
{{{1,2},{2,3}}}
{{{1,2},{1,3}}}
{{{1,3}},{{2,3}}}
{{{1,2}},{{2,3}}}
{{{1,2}},{{1,3}}}
{{{1,2},{1,3},{2,3}}}
{{{1,2}},{{1,3}},{{2,3}}}
|
|
CROSSREFS
|
Cf. A001187, A030019, A048143, A275307, A286520,, A293510, A304717, A317631, A317632, A317635.
Sequence in context: A217145 A266835 A288324 * A198401 A135609 A277422
Adjacent sequences: A317631 A317632 A317633 * A317635 A317636 A317637
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Gus Wiseman, Aug 02 2018
|
|
STATUS
|
approved
|
|
|
|