This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317590 Heinz numbers of integer partitions that are not uniformly normal. 4
 10, 14, 15, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition. LINKS EXAMPLE Sequence of all non-uniformly normal integer partitions begins: (31), (41), (32), (311), (42), (51), (2111), (61), (411), (52), (71), (43), (81), (62), (3111), (421), (511), (322), (91), (21111), (331). MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1, And[Union[q]==Range[Max[q]], uninrmQ[Sort[Length/@Split[q], Greater]]]]; Select[Range[1000], !uninrmQ[primeMS[#]]&] CROSSREFS Cf. A055932, A056239, A181819, A182850, A296150, A304687, A304818, A317089, A317090, A317245, A317246, A317493, A317588, A317589. Sequence in context: A227010 A246449 A121836 * A081062 A209800 A119613 Adjacent sequences:  A317587 A317588 A317589 * A317591 A317592 A317593 KEYWORD nonn AUTHOR Gus Wiseman, Aug 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 12:14 EDT 2019. Contains 321448 sequences. (Running on oeis4.)