login
A317537
The n-th positive integer that has exactly n representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
1
1, 29, 91, 426, 1002, 2283, 3979, 5886, 10861, 17116, 20749, 35106, 44031, 60919, 67453, 108655, 142429, 197107, 232625, 303317, 352093, 432517, 542935, 642520, 839938, 988791, 1050505, 1208559, 1612876, 1753324, 2129203, 2391496, 2735890, 3141916, 3593278
OFFSET
1,2
FORMULA
a(n) = A317390(n,n).
EXAMPLE
a(1) = 1: 1.
a(2) = 29: 1 + 2 * (1 + 13) = 1 + 7 * (1 + 3) = 29.
a(3) = 91: 1 + 2 * (1 + 11 * (1 + 3)) = 1 + 3 * (1 + 29) = 1 + 5 * (1 + 17) = 91.
CROSSREFS
A diagonal of A317390.
Cf. A317385.
Sequence in context: A325073 A152294 A201487 * A107940 A039416 A043239
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 30 2018
STATUS
approved