login
A317516
Number of nX7 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1
64, 8192, 1028335, 129072576, 16206294085, 2034862700902, 255495837970145, 32079862886682262, 4027923603166842813, 505743077861917510398, 63500722828808546571017, 7973103293076638791675836
OFFSET
1,1
COMMENTS
Column 7 of A317517.
LINKS
FORMULA
Empirical: a(n) = 120*a(n-1) +187*a(n-2) +61002*a(n-3) +325211*a(n-4) +8540018*a(n-5) +55665488*a(n-6) +197081135*a(n-7) +679772036*a(n-8) -13105227717*a(n-9) -94788188007*a(n-10) +105665592115*a(n-11) +1800234791684*a(n-12) +1093938256678*a(n-13) -14583514197672*a(n-14) -20050560105580*a(n-15) +57977995880940*a(n-16) +115650903098871*a(n-17) -105222965589160*a(n-18) -320560034452090*a(n-19) +29052185905214*a(n-20) +431159735045996*a(n-21) +164127473071996*a(n-22) -201290198060152*a(n-23) -181630216283952*a(n-24) -89746931670336*a(n-25) +5796742093472*a(n-26) +84410545306560*a(n-27) +50872693326464*a(n-28) +10683412435968*a(n-29) -1911278949888*a(n-30) -9878941541376*a(n-31) -5707247892480*a(n-32) -1805856768000*a(n-33) -746496000000*a(n-34)
EXAMPLE
Some solutions for n=5
..0..0..0..0..1..0..0. .0..0..0..0..1..0..1. .0..0..0..0..0..0..1
..0..0..0..0..0..0..1. .0..0..0..0..0..1..1. .0..0..0..0..1..0..0
..0..0..0..0..0..1..1. .0..0..0..0..0..1..1. .0..0..0..0..0..1..0
..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..1..0..0
..0..0..0..0..0..0..0. .0..0..0..1..0..0..1. .0..0..0..1..0..1..0
CROSSREFS
Cf. A317517.
Sequence in context: A303420 A301406 A303426 * A300181 A183499 A187702
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 30 2018
STATUS
approved