login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317495 Triangle read by rows: T(0,0) = 1; T(n,k) =2 * T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0. 2
1, 2, 4, 8, 1, 16, 4, 32, 12, 64, 32, 1, 128, 80, 6, 256, 192, 24, 512, 448, 80, 1, 1024, 1024, 240, 8, 2048, 2304, 672, 40, 4096, 5120, 1792, 160, 1, 8192, 11264, 4608, 560, 10, 16384, 24576, 11520, 1792, 60, 32768, 53248, 28160, 5376, 280, 1, 65536, 114688, 67584, 15360, 1120, 12 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.)

The coefficients in the expansion of 1/(1-2x-x^3) are given by the sequence generated by the row sums.

The row sums give A008998 and Pisot sequences E(4,9), P(4,9) when n > 1, see A020708.

If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.205569430400..., when n approaches infinity.

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 358, 359.

LINKS

Table of n, a(n) for n=0..56.

Zagros Lalo, Second layer of skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n

Zagros Lalo, Second layer of skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n

FORMULA

T(n,k) = 2^(n - 3k) / ((n - 3k)! k!) * (n - 2k)! where n >= 0 and k = 0..floor(n/3).

EXAMPLE

Triangle begins:

       1;

       2;

       4;

       8,      1;

      16,      4;

      32,     12;

      64,     32,      1;

     128,     80,      6;

     256,    192,     24;

     512,    448,     80,      1;

    1024,   1024,    240,      8;

    2048,   2304,    672,     40;

    4096,   5120,   1792,    160,     1;

    8192,  11264,   4608,    560,    10;

   16384,  24576,  11520,   1792,    60;

   32768,  53248,  28160,   5376,   280,   1;

   65536, 114688,  67584,  15360,  1120,  12;

  131072, 245760, 159744,  42240,  4032,  84;

  262144, 524288, 372736, 112640, 13440, 448, 1;

MATHEMATICA

t[n_, k_] := t[n, k] = 2^(n - 3k)/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ]  // Flatten

t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten

PROG

(GAP) Flat(List([0..20], n->List([0..Int(n/3)], k->2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Jul 31 2018

(MAGMA) /* As triangle */ [[2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))* Factorial(n-2*k): k in [0..Floor(n/3)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018

CROSSREFS

Row sums give A008998, A020708.

Cf. A013609

Cf. A038207

Cf. A317494

Cf. A128099, A207538.

Cf. A000079 (column 0), A001787 (column 1), A001788 (column 2), A001789 (column 3), A003472 (column 4).

Sequence in context: A102256 A000455 A282821 * A317504 A097888 A030275

Adjacent sequences:  A317492 A317493 A317494 * A317496 A317497 A317498

KEYWORD

tabf,nonn,easy

AUTHOR

Zagros Lalo, Jul 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 03:09 EST 2021. Contains 341732 sequences. (Running on oeis4.)