%I
%S 0,1,3,3,1,2,1,4095,3,1,3,3,1,4722366482869645213695,4,3,1,3,4095,1,2,
%T 1,3,3,1
%N Continued fraction for binary expansion of Liouville's number interpreted in base 2 (A012245).
%C The continued fraction of the number obtained by reading A012245 as binary fraction.
%C Except for the first term, the only values that occur in this sequence are 1, 2, 3, 4 and values 2^((m1)*m!)  1 for m > 2. The probability of occurence P(a(n) = k) are given by:
%C P(a(n) = 1) = 1/3,
%C P(a(n) = 2) = 1/12,
%C P(a(n) = 3) = 1/3,
%C P(a(n) = 4) = 1/12 and
%C P(a(n) = 2^((m1)*m!)1) = 1/(3*2^(m1)) for m > 2.
%C The next term is roughly 3.12174855*10^144 (see bfile for precise value).
%H A.H.M. Smeets, <a href="/A317413/b317413.txt">Table of n, a(n) for n = 0..48</a>
%F a(n) = 1 if and only if n in A317538.
%F a(n) = 2 if and only if n in {24*m  19  m > 0} union {24*m  4  m > 0}.
%F a(n) = 3 if and only if n in A317539.
%F a(n) = 4 if and only if n in {12*m + A014710(m1)  2*(A014710(m1) mod 2)  m > 0}
%F a(n) = 2^((m1)*m!)1 if and only if n in {3*2^(m2)*(1+k*4)  1  k >= 0} union {3*2^m2)*(3+k*4)  k >= 0} for m > 2.
%p with(numtheory): cfrac(add(1/2^factorial(n),n=1..7),24,'quotients'); # _Muniru A Asiru_, Aug 11 2018
%t ContinuedFraction[ FromDigits[ RealDigits[ Sum[1/10^n!, {n, 8}], 10, 10000], 2], 60] (* _Robert G. Wilson v_, Aug 09 2018 *)
%o (Python)
%o n,f,i,p,q,base = 1,1,0,0,1,2
%o while i < 100000:
%o ....i,p,q = i+1,p*base,q*base
%o ....if i == f:
%o ........p,n = p+1,n+1
%o ........f = f*n
%o n,a,j = 0,0,0
%o while p%q > 0:
%o ....a,f,p,q = a+1,p//q,q,p%q
%o ....print(a1,f)
%Y Cf. A012245, A014710, A317538, A317539.
%Y Cf. A058304 (in base 10), A317414 (in base 3).
%K nonn,base,cofr
%O 0,3
%A _A.H.M. Smeets_, Jul 27 2018
