login
A317412
Practical numbers (A005153) that are not numbers whose divisors increase by a factor of 2 or less (A174973).
1
78, 348, 666, 820, 860, 1014, 1272, 1326, 1416, 1464, 1482, 1794, 1830, 2010, 2130, 2190, 2262, 2418, 2628, 2844, 2886, 2988, 3198, 3204, 3320, 3354, 3560, 3666, 3738, 4074, 4134, 4602, 4656, 4758, 4848, 4944, 5136, 5226, 5232, 5424, 5538, 5694, 5886, 6102, 6162, 6328
OFFSET
1,1
COMMENTS
Numbers that appear in A005153 but not in A174973.
LINKS
Wikipedia, Practical number.
Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - N. J. A. Sloane, May 20 2023]
EXAMPLE
a(1)=78 because it is practical. It has divisors 1, 2, 3, 6, 13, 26, 39, 78, and 13/6 > 2. This is the first occurrence.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod = prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Dens2DivQ[n_] := Module[{lst=Divisors[n]}, Do[ok=False; If[lst[[m+1]]/lst[[m]]>2, Break[]]; ok=True, {m, 1, Length[lst]-1}]; ok]; Select[Range[10000], PracticalQ[#]&&!Dens2DivQ[#] &]
CROSSREFS
Sequence in context: A118938 A362546 A206004 * A231393 A231461 A007255
KEYWORD
nonn
AUTHOR
Frank M Jackson, Jul 27 2018
STATUS
approved