%I #7 Jul 26 2018 16:27:03
%S 1,1,0,-1,3,-8,23,-89,556,-4773,44425,-397670,3060577,-12448655,
%T -235761640,9571505555,-241952653453,5424619822460,-116900288145113,
%U 2494797839905055,-53406941947725348,1152770311462756071,-25109138533156554399,550613923917090815374,-12088287036694435407999
%N Expansion of e.g.f. exp(exp(x/(1 + x)) - 1).
%C Inverse Lah transform of the Bell numbers (A000110).
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*Bell(k)*n!/k!, where Bell() = A000110.
%p a:= proc(n) option remember; add((-1)^(n-k)*n!/k!*
%p binomial(n-1, k-1)*combinat[bell](k), k=0..n)
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 26 2018
%t nmax = 24; CoefficientList[Series[Exp[Exp[x/(1 + x)] - 1], {x, 0, nmax}], x] Range[0, nmax]!
%t Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] BellB[k] n!/k!, {k, 0, n}], {n, 0, 24}]
%Y Cf. A000110, A084357.
%K sign
%O 0,5
%A _Ilya Gutkovskiy_, Jul 26 2018