%I #21 Mar 21 2023 15:35:32
%S -7,-10,-10,-7,-10,-10,-7,-7,-10,-10,-10,-7,-7,-10,-7,-7,-10,-10,-10,
%T -7,-10,-10,-7,-7,-7,-10,-10,-7,-7,-10,-7,-7,-10,-10,-10,-7,-10,-10,
%U -7,-7,-10,-10,-10,-7,-7,-10,-7,-7,-7,-10,-10,-7,-10,-10,-7,-7,-7,-10,-10,-7,-7,-10,-7,-7
%N a(n) = A317333(n) - 8*n.
%H A.H.M. Smeets, <a href="/A317336/b317336.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Fo#fold">Index entries for sequences obtained by enumerating foldings</a>
%F a(4*n+4) = -7, a(4*n+2) = -10, for n > 0. a(1) = -7 and a(2*n-1) = a(n) for n > 1.
%F abs(a(n+2)+8) = A014710(n) for n >= 0.
%F a(n) = -7-3*A082410(n)
%o (Python)
%o n, f, i, p, q = 1, 1, 0, 0, 1
%o while i < 1000000:
%o i, p, q = i + 1, p * 10, q * 10
%o if i == f:
%o p, n = p + 1, n + 1
%o f = f * n
%o n, a, j = 0, 0, 0
%o while p % q > 0:
%o a, f, p, q = a + 1, p // q, q, p % q
%o if f == 9:
%o n = n + 1
%o print(n, a - 1 - 8 * n)
%Y Cf. A014710, A082410, A317331, A317332, A317333, A317335.
%K sign
%O 1,1
%A _A.H.M. Smeets_, Jul 26 2018