OFFSET
0,3
COMMENTS
Partial sums give the generalized 15-gonal numbers (A277082).
a(n) is also the length of the n-th line segment of the rectangular spiral wh0se vertices are the generalized 15-gonal numbers.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
a(2n) = 11*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 26 2018: (Start)
G.f.: x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (13 + 9*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024
MATHEMATICA
{0}~Join~Riffle[2 Range@ # - 1, 11 Range@ #] &@ 35 (* or *)
CoefficientList[Series[x (1 + 11 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* Michael De Vlieger, Jul 26 2018 *)
LinearRecurrence[{0, 2, 0, -1}, {0, 1, 11, 3}, 90] (* Harvey P. Dale, Aug 28 2022 *)
PROG
(PARI) concat(0, Vec(x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 26 2018
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Omar E. Pol, Jul 25 2018
STATUS
approved