OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000984(k).
MAPLE
a:=series((1 + x)^2*BesselI(0, 2*log(1 + x)), x=0, 26): seq(n!*coeff(a, x, n), n=0..25); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 25; CoefficientList[Series[(1 + x)^2 BesselI[0, 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] Binomial[2 k, k], {k, 0, n}], {n, 0, 25}]
PROG
(PARI) my(x='x + O('x^30)); Vec(serlaplace((1 + x)^2*besseli(0, 2*log(1 + x)))) \\ Michel Marcus, Mar 27 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 22 2019
STATUS
approved