login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317246 Heinz numbers of supernormal integer partitions. 12
1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

LINKS

Table of n, a(n) for n=1..48.

Index entries for sequences related to Heinz numbers

EXAMPLE

Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

supnrm[q_]:=Or[q=={}||Union[q]=={1}, And[Union[q]==Range[Max[q]], supnrm[Sort[Length/@Split[q], Greater]]]];

Select[Range[10000], supnrm[primeMS[#]]&]

CROSSREFS

Cf. A055932, A056239, A181819, A182850, A296150, A304465, A304687, A304818, A305732, A305733, A317089, A317090, A317245.

Sequence in context: A064527 A007694 A322492 * A279686 A219653 A050622

Adjacent sequences:  A317243 A317244 A317245 * A317247 A317248 A317249

KEYWORD

nonn

AUTHOR

Gus Wiseman, Jul 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 16:17 EDT 2019. Contains 322310 sequences. (Running on oeis4.)