This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317246 Heinz numbers of supernormal integer partitions. 12
 1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition. LINKS EXAMPLE Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321). MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; supnrm[q_]:=Or[q=={}||Union[q]=={1}, And[Union[q]==Range[Max[q]], supnrm[Sort[Length/@Split[q], Greater]]]]; Select[Range[10000], supnrm[primeMS[#]]&] CROSSREFS Cf. A055932, A056239, A181819, A182850, A296150, A304465, A304687, A304818, A305732, A305733, A317089, A317090, A317245. Sequence in context: A064527 A007694 A322492 * A279686 A219653 A050622 Adjacent sequences:  A317243 A317244 A317245 * A317247 A317248 A317249 KEYWORD nonn AUTHOR Gus Wiseman, Jul 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 16:17 EDT 2019. Contains 322310 sequences. (Running on oeis4.)