login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003172
Q(sqrt n) is a unique factorization domain (or simple quadratic field).
(Formerly M0618)
17
2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131, 133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163, 166, 167, 173, 177, 179, 181, 191, 193, 197, 199, 201
OFFSET
1,1
COMMENTS
Squarefree numbers n such that A003649 is 1. - T. D. Noe, Apr 02 2008
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 422-423.
E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields. British Association Mathematical Tables, Vol. 4, London, 1934. (See p. 1.)
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 296.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 [terms 1 through 1000 by T. D. Noe]
R. G. Underwood, On the content bound for real quadratic field extensions, Axioms 2013, 2, 1-9; doi:10.3390/axioms2010001.
MATHEMATICA
Select[Range[2, 199], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[#]] == 1 &] (* Alonso del Arte, Apr 17 2015 *)
PROG
(PARI)
A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); }
{ for (n=2, 10^3,
if ( n!=A007947(n), next() );
K = bnfinit(x^2 - n);
if ( K.cyc == [], print1( n, ", ") );
); }
/* Joerg Arndt, Oct 18 2012 */
(PARI) is(n)=issquarefree(n) && qfbclassno(if(n%4>1, 4, 1)*n)==1 \\ Charles R Greathouse IV, Jan 19 2017
CROSSREFS
Cf. A061574 (includes negative n), A029702-A029705, A218038-A218042.
Sequence in context: A089633 A362815 A358772 * A340856 A325100 A360007
KEYWORD
nonn,nice
EXTENSIONS
The table in Borevich and Shafarevich extends to 497.
STATUS
approved