%I
%S 0,1,0,1,1,2,1,2,3,2,3,3,4,3,4,3,4,4,5,4,5,6,5,6,6,7,6,7,7,8,7,8,9,8,
%T 9,9,10,9,10,9,10,10,11,10,11,12,11,12,12,13,12,13,14,13,14,14,15,14,
%U 15,14,15,15,16,15,16,17,16,17,17
%N A140100(n)  A140102(n).
%C It follows from known properties of A140100 and A140102 that the first differences of this sequence (see A317193) belong to {1, 0, 1}.
%C Conjecture 1: a(n) = A276796(n)  A276797(n).
%C Conjecture 2: The firstdifference sequence A317193 is an encoded form of the ternary tribonacci word A080843.
%C All these conjectures are now theorems  see the Dekking et al. paper.  _N. J. A. Sloane_, Jul 22 2019
%H N. J. A. Sloane, <a href="/A317192/b317192.txt">Table of n, a(n) for n = 1..50000</a>
%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: nonattacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.
%Y Cf. A140100, A140101, A140102, A140103, A317193, A080843, A276796, A276797.
%K nonn
%O 1,6
%A _N. J. A. Sloane_, Jul 31 2018
