%I #19 Apr 03 2023 10:36:13
%S 16661,19991,1160611,1190911,1688861,1988891,101616101,101919101,
%T 106111601,106191601,109111901,109161901,116010611,116696611,
%U 119010911,119969911,160080061,160101061,166080661,169060961,188868881,188898881,190080091,190101091,196090691,199080991
%N Palindromic invertible primes.
%C a(38) = 10886968801 is the first term that uses all of the invertible digits (0, 1, 6, 8, 9).
%C Number of terms < 10^(2k-1): 0, 0, 2, 6, 26, 78, 314, 1010, 3976, 15174, ..., . - _Robert G. Wilson v_, Jul 24 2018
%C Intersection of A002385 and A048890, or, respectively, A002113 and A048890. - _Felix Fröhlich_, Jul 24 2018
%H Robert G. Wilson v, <a href="/A317179/b317179.txt">Table of n, a(n) for n = 1..15175</a>
%H C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=Strobogrammatic">strobogrammatic</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Strobogrammatic_number">Strobogrammatic number</a>
%e 16661 is a term because it is a prime and a palindrome as well; when rotated by 180 degrees it becomes 19991 that is also a prime.
%t Select[ lst = {}; fQ[n_] := Block[{allset = {0, 1, 6, 8, 9}, id = IntegerDigits@n}, rid = Reverse[id /. {6 -> 9, 9 -> 6}];Union@Join[id, allset] == allset && PrimeQ@FromDigits@rid && rid != id]; Do[If[PrimeQ@n && fQ@n, AppendTo[lst, n]], {n, 1090000000}]; lst, # ==FromDigits[Reverse[IntegerDigits[#]]] &]
%o (PARI) is_palandinv(n) = my(d=digits(n), ineligible_d=[2, 3, 4, 5, 7]); d==Vecrev(d) && #setintersect(vecsort(d), ineligible_d)==0
%o invert(n) = my(d=digits(n), e=[]); for(k=1, #d, if(d[k]==0, e=concat(e, [0])); if(d[k]==1, e=concat(e, [1])); if(d[k]==6, e=concat(e, [9])); if(d[k]==8, e=concat(e, [8])); if(d[k]==9, e=concat(e, [6]))); subst(Pol(e), x, 10)
%o is(n) = my(d=digits(n)); is_palandinv(n) && n!=invert(n) && ispseudoprime(invert(n))
%o forprime(p=1, 2e8, if(is(p), print1(p, ", "))) \\ _Felix Fröhlich_, Jul 24 2018
%Y Cf. A000040, A002113, A002385, A045574, A048890.
%K nonn,base
%O 1,1
%A _K. D. Bajpai_, Jul 23 2018