login
Total number of colors summed over all collections of nonempty multisets with a total of n objects having color set {1,...,k} for some k <= n.
2

%I #12 Dec 08 2023 07:11:41

%S 0,1,6,34,210,1378,9726,73314,588846,5018290,45216798,429290178,

%T 4281260386,44724792130,488185773782,5555082575762,65760600166734,

%U 808339570702354,10299822335353654,135828836289073570,1851208197237464530,26040184250745321058

%N Total number of colors summed over all collections of nonempty multisets with a total of n objects having color set {1,...,k} for some k <= n.

%H Alois P. Heinz, <a href="/A317178/b317178.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = Sum_{k=0..n} k * A255903(n,k).

%p b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*add(d*

%p binomial(d+k-1, k-1), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k)*k, k=0..n):

%p seq(a(n), n=0..25);

%t b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k]*Sum[d*Binomial[d + k - 1, k - 1], {d, Divisors[j]}], {j, 1, n}]/n];

%t a[n_] := Sum[Sum[b[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]*k, {k, 0, n}];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Dec 08 2023, after _Alois P. Heinz_ *)

%Y Cf. A255903.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 23 2018