OFFSET
1,1
COMMENTS
a(1), a(2), ..., a(26) are prime. As of Jul 23 2018, this is one of the longest known sequences of primes in arithmetic progression, and was found by Bruce E. Slade in 2017.
LINKS
Jens Kruse Andersen, All known AP24 to AP26.
Wikipedia, Largest known primes in AP.
FORMULA
a(n) = 48277590120607451 + a(n-1)*37835074*23#, where 23# := 2*3*5*7*11*13*17*19*23 = 223092870.
EXAMPLE
a(26) = 48277590120607451 + 25*37835074*223092870 = 259295971253666951 is prime.
MAPLE
seq(48277590120607451+(n-1)*8440735245322380, n=1..26); # Marco Ripà, Aug 10 2018
MATHEMATICA
Table[48277590120607451 + (n - 1) 8440735245322380, {n, 1, 26}]
PROG
(GAP) List([1..26], n->55837783597462913+(n-1)*13858932213216090); # Marco Ripà, Aug 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Marco Ripà, Jul 23 2018
STATUS
approved