login
A317160
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 5, 3, 5, 9, 9, 5, 8, 21, 14, 21, 8, 13, 57, 29, 29, 57, 13, 21, 125, 73, 105, 73, 125, 21, 34, 289, 165, 379, 379, 165, 289, 34, 55, 741, 394, 1245, 2345, 1245, 394, 741, 55, 89, 1737, 1068, 5458, 9686, 9686, 5458, 1068, 1737, 89, 144, 4045, 3018, 25315, 65283
OFFSET
1,2
COMMENTS
Table starts
..1....2....3......5.......8........13.........21...........34.............55
..2....5....9.....21......57.......125........289..........741...........1737
..3....9...14.....29......73.......165........394.........1068...........3018
..5...21...29....105.....379......1245.......5458........25315.........111407
..8...57...73....379....2345......9686......65283.......549872........3771839
.13..125..165...1245....9686.....69701.....887617.....10940249......123485236
.21..289..394...5458...65283....887617...20168266....403588059.....7455221517
.34..741.1068..25315..549872..10940249..403588059..13792577708...402260884943
.55.1737.3018.111407.3771839.123485236.7455221517.402260884943.18922956181705
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) -a(n-2) +8*a(n-3) -8*a(n-4)
k=3: [order 18] for n>20
k=4: [order 66] for n>69
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..0..0. .0..1..1..1. .0..0..0..0. .0..0..0..0
..0..0..1..1. .0..0..1..0. .1..1..1..1. .1..0..0..0. .1..0..0..0
..0..0..1..0. .0..0..0..0. .1..1..1..1. .1..0..1..0. .1..1..0..0
..1..0..1..0. .0..1..1..1. .1..1..1..1. .1..0..0..0. .1..1..0..1
..0..0..1..1. .1..1..1..0. .0..1..1..1. .0..0..0..0. .0..1..0..0
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A304349.
Sequence in context: A316427 A317429 A316239 * A317043 A317697 A132403
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 22 2018
STATUS
approved