login
A317126
Numbers of the form: (6*m + 1) * (12*m + 1) * Product_{i=1..k-2} (9 * 2^i * m + 1), where k >= 3, with the condition that each of the factors is prime and that m is divisible by 2^(k-4).
2
1729, 63973, 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, 11346205609, 13079177569, 21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409, 172018713961, 173032371289, 192739365541
OFFSET
1,1
COMMENTS
Also known as extended Chernick Carmichael numbers.
Each term of this sequence is the product of 3 or more distinct prime factors.
LINKS
Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc. 45:4 (1939), pp. 269-274.
Daniel Suteu, Perl program
Eric Weisstein's World of Mathematics, Carmichael Number
CROSSREFS
Cf. A033502.
Sequence in context: A306479 A272798 A212920 * A318646 A182087 A327787
KEYWORD
nonn
AUTHOR
Daniel Suteu, Jul 21 2018
STATUS
approved