OFFSET
0,4
COMMENTS
A partition is normal if its parts span an initial interval of positive integers.
a(n) = 1 if and only if n = 0, 1, 2, 4 or a prime > 3. - Chai Wah Wu, Jun 22 2020
From David A. Corneth, Jul 08 2020: (Start)
Let [f_1, f_2, ,..., f_i, ..., f_m] be the multiplicities of parts i in a partition of Sum_{i=1..m} (f_i * i). Then, as the sequence of multiplicities is a palindrome, we have f_1 = f_m, ..., f_i = f_(m+1-i). So the sum is f_1 * (1 + m) + f_2 * (2 + m-1) + ... + f_(floor(m/2)) * m/2 (the last term depending on the parity of m.). This way it becomes a list of Diophantine equations for which we look for the number of solutions.
For example, for m = 4 we look for solutions to the Diophantine equation 5 * (c + d) = n where c, d are positive integers >= 1. A similar technique is used in A254524. (End)
LINKS
David A. Corneth, Table of n, a(n) for n = 0..9999 (first 215 terms from Chai Wah Wu)
Wikipedia, Palindrome
EXAMPLE
The a(20) = 8 partitions:
(44432111), (44332211), (43332221),
(3333221111), (3332222111), (3322222211), (3222222221),
(11111111111111111111).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[Union[#]==Range[First[#]], Length/@Split[#]==Reverse[Length/@Split[#]]]&]], {n, 30}]
PROG
(Python)
from sympy.utilities.iterables import partitions
from sympy import integer_nthroot, isprime
def A317086(n):
if n > 3 and isprime(n):
return 1
else:
c = 1
for d in partitions(n, k=integer_nthroot(2*n, 2)[0], m=n*2//3):
l = len(d)
if l > 0:
k = max(d)
if l == k:
for i in range(k//2):
if d[i+1] != d[k-i]:
break
else:
c += 1
return c # Chai Wah Wu, Jun 22 2020
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Gus Wiseman, Jul 21 2018
STATUS
approved