login
A317077
Number of connected multiset partitions of normal multisets of size n.
9
1, 1, 3, 8, 28, 110, 519, 2749, 16317, 106425, 755425, 5781956, 47384170, 413331955, 3818838624, 37213866876, 381108145231, 4088785729738, 45829237977692, 535340785268513, 6502943193997922, 81984445333355812, 1070848034863526547, 14467833457108560375, 201894571410270034773
OFFSET
0,3
COMMENTS
A multiset is normal if it spans an initial interval of positive integers.
LINKS
EXAMPLE
The a(3) = 8 connected multiset partitions are (111), (1)(11), (1)(1)(1), (122), (2)(12), (112), (1)(12), (123).
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Length/@Table[Join@@Table[Select[mps[m], Length[csm[#]]==1&], {m, allnorm[n]}], {n, 8}]
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={my(u=vector(n, k, x*Ser(EulerT(vector(n, i, binomial(i+k-1, i)))))); Vec(1+vecsum(Connected(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*u[i])))))} \\ Andrew Howroyd, Jan 16 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 20 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 16 2023
STATUS
approved