login
A317076
Number of connected antichains of multisets with multiset-join a strongly normal multiset of size n.
5
1, 1, 2, 8, 110, 7047
OFFSET
0,3
COMMENTS
An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
EXAMPLE
The a(3) = 8 connected antichains of multisets:
(111),
(112), (11)(12),
(123), (13)(23), (12)(23), (12)(13), (12)(13)(23).
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}];
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
cuu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]], submultisetQ], And[multijoin@@#==m, Length[csm[#]]==1]&];
Table[Length[Join@@Table[cuu[m], {m, strnorm[n]}]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 20 2018
STATUS
approved