login
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 8 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1

%I #20 Sep 05 2018 02:27:51

%S 1,1,1,8,1,16,1,24,64,1,32,192,1,40,384,512,1,48,640,2048,1,56,960,

%T 5120,4096,1,64,1344,10240,20480,1,72,1792,17920,61440,32768,1,80,

%U 2304,28672,143360,196608,1,88,2880,43008,286720,688128,262144,1,96,3520,61440,516096,1835008,1835008

%N Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 8 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

%C The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013615 ((1+8*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038279 ((8+x)^n).

%C The coefficients in the expansion of 1/(1-x-8x^2) are given by the sequence generated by the row sums.

%C The row sums are Generalized Fibonacci numbers (see A015443).

%C If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.3722813232690143..., when n approaches infinity; see A235162 (Decimal expansion of (sqrt(33)+1)/2).

%D Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98

%H Zagros Lalo, <a href="/A317026/a317026.pdf">Left-justified triangle</a>

%H Zagros Lalo, <a href="/A317026/a317026_1.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (1 + 8x)^n</a>

%H Zagros Lalo, <a href="/A317026/a317026_2.pdf">Skew diagonals in center-justified triangle of coefficients in expansion of (8 + x)^n</a>

%F T(n,k) = 8^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).

%e Triangle begins:

%e 1;

%e 1;

%e 1, 8;

%e 1, 16;

%e 1, 24, 64;

%e 1, 32, 192;

%e 1, 40, 384, 512;

%e 1, 48, 640, 2048;

%e 1, 56, 960, 5120, 4096;

%e 1, 64, 1344, 10240, 20480;

%e 1, 72, 1792, 17920, 61440, 32768;

%e 1, 80, 2304, 28672, 143360, 196608;

%e 1, 88, 2880, 43008, 286720, 688128, 262144;

%e 1, 96, 3520, 61440, 516096, 1835008, 1835008;

%e 1, 104, 4224, 84480, 860160, 4128768, 7340032, 2097152;

%e 1, 112, 4992, 112640, 1351680, 8257536, 22020096, 16777216;

%e 1, 120, 5824, 146432, 2027520, 15138816, 55050240, 75497472, 16777216;

%t t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 8 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten.

%t Table[8^k Binomial[n - k, k], {n, 0, 15}, {k, 0, Floor[n/2]}].

%o (GAP) Flat(List([0..13],n->List([0..Int(n/2)],k->8^k*Binomial(n-k,k)))); # _Muniru A Asiru_, Jul 19 2018

%Y Row sums give A015443.

%Y Cf. A013615, A038279, A235162.

%K tabf,nonn,easy

%O 0,4

%A _Zagros Lalo_, Jul 19 2018