OFFSET
0,3
COMMENTS
The triangle is related to the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(2n,3).
LINKS
Ji-Young Ham and Joongul Lee, An explicit formula for the A-polynomial of the knot with Conway’s notation C(2n,3), Journal of Knot Theory and Its Ramifications 25 (2016), 1-9.
Ryo Hanaki, On scannable properties of the original knot from a knot shadow, Topology and its Applications 194 (2015), 296-305.
Bin Lu and Jianyuan K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math/0606114 [math.GT], 2006.
FORMULA
EXAMPLE
The triangle T(n,k) begins:
n\k| 0 1 2 3 4 5 9 7 8 9 10 11 12 13 14
-------------------------------------------------------------------------------
0 | 0 1 3 3 1
1 | 0 7 14 9 2
2 | 0 13 37 43 26 8 1
3 | 0 19 72 129 141 98 42 10 1
4 | 0 25 119 291 463 504 378 192 63 12 1
5 | 0 31 178 553 1156 1716 1848 1452 825 330 88 14 1
6 | 0 37 249 939 2432 4576 6435 6864 5577 3432 1573 520 117 16 1
...
MAPLE
T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
MATHEMATICA
row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
Array[row, 12, 0] // Flatten
PROG
(Maxima)
T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Franck Maminirina Ramaharo, Jul 18 2018
STATUS
approved