login
A316934
Primes p such that q^2 - p^2 + 1 is the square of a composite number where p and q are consecutive primes.
0
409, 599, 739, 911, 1217, 1481, 3539, 3637, 4421, 5081, 7591, 7951, 10301, 10993, 11173, 14449, 14533, 15619, 16073, 16453, 17203, 17341, 18661, 21319, 22259, 23671, 23869, 26267, 27059, 30169, 32119, 33409, 35531, 37139, 39511, 41411, 42193, 42641, 45979, 46171, 47741, 55931, 58937, 60761, 65089, 70991, 79867, 80599, 84389, 86579, 90523, 96739, 98909, 100913, 104717, 105199, 108343, 112573, 122263, 123551, 129581, 136951, 156419
OFFSET
1,1
COMMENTS
Calculations provided by Robert Israel.
For what p will the number of squared prime be less than the number of squared composites? What would the distribution be for increasing p?
EXAMPLE
With p=409 and q=419, 419^2 - 409^2 + 1 = 8281 = 91^2.
MATHEMATICA
Select[Partition[Prime@ Range[10^4], 2, 1], CompositeQ@ Sqrt[#2^2 - #1^2 + 1] & @@ # &][[All, 1]] (* Michael De Vlieger, Jul 19 2018 *)
CROSSREFS
Sequence in context: A345797 A139661 A212604 * A052354 A213079 A260173
KEYWORD
nonn
AUTHOR
J. M. Bergot, Jul 16 2018
STATUS
approved