%I #4 Jul 16 2018 12:59:08
%S 1,24,143,1719,20235,242908,2937685,35648580,433015180,5262528773,
%T 63970049533,777666897493,9454217730924,114938042939809,
%U 1397347702401166,16988154733726692,206532479189888847,2510907320513580411
%N Number of nX4 0..1 arrays with every element unequal to 0, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A316932.
%H R. H. Hardin, <a href="/A316928/b316928.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 13*a(n-1) -2*a(n-2) -30*a(n-3) -788*a(n-4) -1041*a(n-5) +1816*a(n-6) +11987*a(n-7) +22733*a(n-8) -1842*a(n-9) -71393*a(n-10) -158096*a(n-11) -124732*a(n-12) +82321*a(n-13) +357878*a(n-14) +457301*a(n-15) +230798*a(n-16) -137151*a(n-17) -360963*a(n-18) -306530*a(n-19) -130705*a(n-20) -40430*a(n-21) -55924*a(n-22) -79916*a(n-23) -65815*a(n-24) -38444*a(n-25) -24948*a(n-26) -24544*a(n-27) -18848*a(n-28) -6342*a(n-29) -2280*a(n-30) -1232*a(n-31) -304*a(n-32) -56*a(n-33) +96*a(n-34) for n>35
%e Some solutions for n=5
%e ..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1
%e ..1..1..1..0. .1..1..0..1. .0..1..1..0. .1..1..1..0. .0..1..1..0
%e ..0..0..0..0. .0..0..1..1. .1..0..0..1. .1..0..0..1. .1..1..0..0
%e ..0..0..1..1. .1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..1
%e ..0..0..1..0. .0..1..0..1. .1..0..1..0. .0..1..1..0. .1..0..0..0
%Y Cf. A316932.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jul 16 2018