login
A316900
Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is an integer.
0
2, 4, 8, 16, 18, 32, 36, 64, 72, 128, 144, 162, 195, 250, 256, 288, 294, 324, 390, 500, 512, 576, 588, 648, 780, 1000, 1024, 1125, 1152, 1176, 1296, 1458, 1560, 1755, 2000, 2048, 2250, 2304, 2352, 2592, 2646, 2916, 3120, 3185, 3510, 4000, 4096, 4500, 4608
OFFSET
1,1
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (11), (111), (1111), (221), (11111), (2211), (111111), (22111), (1111111), (221111), (22221), (632), (3331), (11111111).
MATHEMATICA
Select[Range[2, 1000], And[GCD@@PrimePi/@FactorInteger[#][[All, 1]]==1, IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]], {m, FactorInteger[#]}]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 16 2018
STATUS
approved