login
A316856
Heinz numbers of integer partitions whose reciprocal sum is an integer.
20
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 147, 162, 195, 250, 256, 288, 294, 324, 390, 500, 512, 576, 588, 648, 729, 780, 1000, 1024, 1125, 1152, 1176, 1296, 1323, 1458, 1560, 1755, 2000, 2048, 2250, 2304, 2352, 2401, 2592, 2646, 2916, 3120
OFFSET
1,2
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
195 is the Heinz number of (6,3,2), which has reciprocal sum 1/6 + 1/3 + 1/2 = 1, which is an integer, so 195 belongs to the sequence.
The sequence of all integer partitions whose reciprocal sum is an integer begins: (), (1), (11), (111), (22), (1111), (221), (11111), (2211), (111111), (22111), (2222).
MATHEMATICA
Select[Range[1000], IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]], {m, If[#==1, {}, FactorInteger[#]]}]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 14 2018
STATUS
approved