login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316854 Number of integer partitions of n whose reciprocal sum is the reciprocal of an integer. 31
1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 2, 4, 1, 5, 1, 5, 1, 3, 4, 2, 5, 6, 5, 5, 4, 5, 5, 4, 8, 10, 9, 7, 5, 9, 10, 6, 12, 10, 8, 7, 6, 9, 13, 15, 8, 19, 13, 19, 19, 19, 18, 22, 26, 28, 28, 29, 22, 33, 29, 28, 38, 34, 26, 40, 32, 43, 39, 51, 38, 62, 46 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..200 (first 100 terms from Robert G. Wilson v)

EXAMPLE

The a(36) = 10 partitions:

  (36),

  (30,6), (24,12), (18,18),

  (12,12,12),

  (12,12,6,6),

  (15,10,4,4,3), (12,12,6,3,3), (12,8,8,6,2),

  (6,6,6,6,6,6).

MATHEMATICA

Table[Length[Select[IntegerPartitions[n], IntegerQ[1/Sum[1/m, {m, #}]]&]], {n, 30}]

ric[n_, p_, s_] := If[n == 0, If[IntegerQ[1/s], c++], Do[If[s + 1/i <= 1, ric[n - i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c = 0; Do[ric[n - j, {j}, 1/j], {j, n}]; c); Array[a, 80] (* after Giovanni Resta in A316898, Robert G. Wilson v, Jul 23 2018 *)

PROG

(PARI) a(n)={my(s=0); forpart(p=n, if(frac(1/sum(i=1, #p, 1/p[i]))==0, s++)); s} \\ Andrew Howroyd, Jul 15 2018

CROSSREFS

Cf. A000041, A051908, A058360, A316855, A316856, A316857.

Sequence in context: A178526 A039958 A029344 * A125769 A272084 A003023

Adjacent sequences:  A316851 A316852 A316853 * A316855 A316856 A316857

KEYWORD

nonn

AUTHOR

Gus Wiseman, Jul 14 2018

EXTENSIONS

a(51)-a(77) from Giovanni Resta, Jul 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 05:41 EDT 2020. Contains 336442 sequences. (Running on oeis4.)