OFFSET
1,2
COMMENTS
This sequence increases slowly.
k occurs A035612(k) times.
Each Fibonacci number occurs more times than any number before it.
LINKS
Nathan Fox, Table of n, a(n) for n = 1..10000
Nathan Fox, Trees, Fibonacci Numbers, and Nested Recurrences, Rutgers University Experimental Math Seminar, Mar 07, 2019
FORMULA
a(n+1)-a(n)=1 or 0.
a(n)/n -> C=(sqrt(5)-1)/(sqrt(5)+1).
MAPLE
PROG
(Magma) I:=[1, 2, 2, 3]; [n le 4 select I[n] else Self(n-Self(n-1))+Self(n-1-Self(n-2)-Self(n-2-Self(n-2))): n in [1..100]]; // Vincenzo Librandi, Jul 09 2018
(GAP) a:=[1, 2, 2, 3];; for n in [5..80] do a[n]:=a[n-a[n-1]]+a[n-1-a[n-2]-a[n-2-a[n-2]]]; od; a; # Muniru A Asiru, Jul 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Nathan Fox, Jul 08 2018
STATUS
approved