login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316557 Number of distinct integer averages of subsets of the integer partition with Heinz number n. 4
0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 3, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 2, 1, 3, 1, 3, 3, 1, 2, 4, 1, 4, 2, 4, 1, 2, 1, 2, 2, 2, 2, 5, 1, 3, 1, 3, 1, 4, 3, 2, 3, 4, 1, 3, 3, 3, 2, 3, 2, 2, 1, 3, 3, 3, 1, 4, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

FORMULA

a(n) <= A316314(n). - Antti Karttunen, Sep 25 2018

EXAMPLE

The a(78) = 5 distinct integer averages of subsets of (6,2,1) are {1, 2, 3, 4, 6}.

MATHEMATICA

Table[Length[Select[Union[Mean/@Subsets[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], IntegerQ]], {n, 100}]

PROG

(PARI)

up_to = 65537;

A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }

v056239 = vector(up_to, n, A056239(n));

A316557(n) = { my(m=Map(), s, k=0); fordiv(n, d, if((d>1)&&(1==denominator(s = v056239[d]/bigomega(d)))&&!mapisdefined(m, s), mapput(m, s, s); k++)); (k); }; \\ Antti Karttunen, Sep 25 2018

CROSSREFS

Cf. A056239, A067538, A122768, A237984, A296150, A316313, A316314, A316440, A316555, A316556.

Sequence in context: A241665 A175307 A324825 * A032436 A280274 A073408

Adjacent sequences:  A316554 A316555 A316556 * A316558 A316559 A316560

KEYWORD

nonn

AUTHOR

Gus Wiseman, Jul 06 2018

EXTENSIONS

More terms from Antti Karttunen, Sep 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 07:31 EST 2019. Contains 329948 sequences. (Running on oeis4.)