login
A316511
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
5
0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 18, 16, 18, 0, 0, 61, 103, 103, 61, 0, 0, 209, 609, 1321, 609, 209, 0, 0, 702, 3680, 14831, 14831, 3680, 702, 0, 0, 2381, 22187, 172574, 317264, 172574, 22187, 2381, 0, 0, 8069, 133917, 1999511, 7009503, 7009503, 1999511
OFFSET
1,5
COMMENTS
Table starts
.0....0......0.........0...........0..............0................0
.0....3......5........18..........61............209..............702
.0....5.....16.......103.........609...........3680............22187
.0...18....103......1321.......14831.........172574..........1999511
.0...61....609.....14831......317264........7009503........154346491
.0..209...3680....172574.....7009503......295326468......12391266721
.0..702..22187...1999511...154346491....12391266721.....990266635029
.0.2381.133917..23203301..3403223836...520715439686...79268327832419
.0.8069.808316.269239457.75038679491.21881306495563.6344959753540191
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
k=3: [order 13] for n>15
k=4: [order 31] for n>32
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..0..0..1
..1..1..1..1. .1..1..0..0. .1..0..0..0. .1..0..1..1. .1..1..0..0
..1..0..0..1. .1..0..0..1. .1..1..1..1. .1..1..1..0. .0..1..1..1
..1..0..0..1. .0..1..1..0. .0..0..0..1. .0..1..0..0. .1..0..1..1
..0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..0..1. .1..0..0..0
CROSSREFS
Column 2 is A303684.
Column 3 is A304762.
Column 4 is A304763.
Sequence in context: A305022 A316686 A304767 * A317465 A051174 A273089
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 05 2018
STATUS
approved