%I #27 Feb 25 2024 06:00:20
%S 97969,88998998929,97888999968769,38999699989995889,79949788888999969,
%T 98987998979757889,99497897999899876,498999778899898896,
%U 597998978979699969,799778987996998689,896899597989995889,899984989899599769,979978999994798769,989999999787828969
%N Squares whose arithmetic mean of digits is 8 (i.e., the sum of digits is 8 times the number of digits).
%C Each term's number of digits is in A174438 (Numbers that are congruent to {0, 2, 5, 8} mod 9). For every positive term k in A174438, it appears that this sequence contains at least one k-digit term with the exception of k=2, k=8, and k=9. (See A316480.)
%H Giovanni Resta, <a href="/A316488/b316488.txt">Table of n, a(n) for n = 1..97</a> (terms < 10^28; first 15 terms from Jon E. Schoenfield)
%e 313^2 = 97969, a 5-digit number whose digit sum is 9+7+9+6+9 = 40 = 8*5, so 97969 is a term.
%e 9949823114^2 = 98998979999888656996, a 20-digit number whose digit sum is 9+8+9+9+8+9+7+9+9+9+9+8+8+8+6+5+6+9+9+6 = 160 = 8*20, so 98998979999888656996 is a term.
%Y Cf. A069711, A174438, A316480.
%Y Intersection of A000290 and A061425. - _Michel Marcus_, Jul 06 2018
%K nonn,base
%O 1,1
%A _Jon E. Schoenfield_, Jul 04 2018