login
A316488
Squares whose arithmetic mean of digits is 8 (i.e., the sum of digits is 8 times the number of digits).
2
97969, 88998998929, 97888999968769, 38999699989995889, 79949788888999969, 98987998979757889, 99497897999899876, 498999778899898896, 597998978979699969, 799778987996998689, 896899597989995889, 899984989899599769, 979978999994798769, 989999999787828969
OFFSET
1,1
COMMENTS
Each term's number of digits is in A174438 (Numbers that are congruent to {0, 2, 5, 8} mod 9). For every positive term k in A174438, it appears that this sequence contains at least one k-digit term with the exception of k=2, k=8, and k=9. (See A316480.)
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..97 (terms < 10^28; first 15 terms from Jon E. Schoenfield)
EXAMPLE
313^2 = 97969, a 5-digit number whose digit sum is 9+7+9+6+9 = 40 = 8*5, so 97969 is a term.
9949823114^2 = 98998979999888656996, a 20-digit number whose digit sum is 9+8+9+9+8+9+7+9+9+9+9+8+8+8+6+5+6+9+9+6 = 160 = 8*20, so 98998979999888656996 is a term.
CROSSREFS
Intersection of A000290 and A061425. - Michel Marcus, Jul 06 2018
Sequence in context: A109185 A253823 A371950 * A235196 A002273 A268819
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, Jul 04 2018
STATUS
approved