login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Squares whose arithmetic mean of digits is 3 (i.e., the sum of digits is 3 times the number of digits).
1

%I #15 Feb 28 2024 10:48:04

%S 144,225,324,441,900,108900,114921,119025,125316,129600,136161,140625,

%T 145161,159201,161604,164025,176400,184041,205209,210681,213444,

%U 216225,219024,221841,239121,242064,245025,248004,254016,291600,304704,308025,311364,314721

%N Squares whose arithmetic mean of digits is 3 (i.e., the sum of digits is 3 times the number of digits).

%C Each term's number of digits is divisible by 3. (See A316480.)

%H Jon E. Schoenfield, <a href="/A316483/b316483.txt">Table of n, a(n) for n = 1..10000</a>

%e 12^2 = 144, a 3-digit number whose digit sum is 1+4+4 = 9 = 3*3, so 144 is a term.

%e 360^2 = 129600, a 6-digit number whose digit sum is 1+2+9+6+0+0 = 18 = 3*6, so 129600 is a term.

%Y Cf. A069711, A316480.

%Y Intersection of A000290 and A061386. - _Michel Marcus_, Jul 06 2018

%K nonn,base

%O 1,1

%A _Jon E. Schoenfield_, Jul 04 2018