login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316436 Sum divided by GCD of the integer partition with Heinz number n > 1. 1
1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 1, 5, 5, 4, 1, 5, 1, 5, 3, 6, 1, 5, 2, 7, 3, 6, 1, 6, 1, 5, 7, 8, 7, 6, 1, 9, 4, 6, 1, 7, 1, 7, 7, 10, 1, 6, 2, 7, 9, 8, 1, 7, 8, 7, 5, 11, 1, 7, 1, 12, 4, 6, 3, 8, 1, 9, 11, 8, 1, 7, 1, 13, 8, 10, 9, 9, 1, 7, 4, 14, 1, 8, 10, 15, 6, 8, 1, 8, 5, 11, 13, 16, 11, 7, 1, 9, 9, 8, 1, 10, 1, 9, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

LINKS

Antti Karttunen, Table of n, a(n) for n = 2..65537

Index entries for sequences computed from indices in prime factorization

Index entries for sequences related to Heinz numbers

MAPLE

a:= n-> (l-> add(i, i=l)/igcd(l[]))(map(i->

      numtheory[pi](i[1])$i[2], ifactors(n)[2])):

seq(a(n), n=2..100);  # Alois P. Heinz, Jul 03 2018

MATHEMATICA

Table[With[{pms=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]}, Total[pms]/GCD@@pms], {n, 2, 100}]

PROG

(PARI) A316436(n) = { my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); sum(i=1, #f~, pis[i]*es[i])/g; }; \\ Antti Karttunen, Sep 10 2018

CROSSREFS

Cf. A056239, A289508, A289509, A290103, A290104, A296150, A316430, A316431, A316432, A316437.

Sequence in context: A326839 A071575 A307908 * A303674 A038569 A308686

Adjacent sequences:  A316433 A316434 A316435 * A316437 A316438 A316439

KEYWORD

nonn

AUTHOR

Gus Wiseman, Jul 03 2018

EXTENSIONS

More terms from Antti Karttunen, Sep 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 16:41 EDT 2020. Contains 337315 sequences. (Running on oeis4.)