login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316417 Number of nX5 0..1 arrays with every element unequal to 0, 1, 2, 5, 6 or 8 king-move adjacent elements, with upper left element zero. 1
16, 22, 66, 287, 1265, 5695, 25312, 112499, 501646, 2235513, 9960614, 44384221, 197791638, 881405480, 3927721393, 17502839038, 77996780117, 347571770492, 1548860409237, 6902082819315, 30757288884006, 137061639574564 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 5 of A316420.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 3*a(n-1) +9*a(n-2) -3*a(n-3) -20*a(n-4) -65*a(n-5) -96*a(n-6) +179*a(n-7) +361*a(n-8) +34*a(n-9) -66*a(n-10) -476*a(n-11) -672*a(n-12) +502*a(n-13) +451*a(n-14) +40*a(n-15) +604*a(n-16) -670*a(n-17) -930*a(n-18) -95*a(n-19) -98*a(n-20) +1056*a(n-21) +1159*a(n-22) -399*a(n-23) -724*a(n-24) -961*a(n-25) -326*a(n-26) +898*a(n-27) +701*a(n-28) +308*a(n-29) -177*a(n-30) -601*a(n-31) -204*a(n-32) +60*a(n-33) +125*a(n-34) +146*a(n-35) -6*a(n-36) -46*a(n-37) -26*a(n-38) -9*a(n-39) +13*a(n-40) +7*a(n-41) -2*a(n-42) -a(n-43) for n>49

EXAMPLE

Some solutions for n=5

..0..0..0..0..0. .0..0..1..0..0. .0..1..0..0..0. .0..0..1..1..1

..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1. .0..1..0..1..1

..1..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .1..0..1..1..0

..0..0..0..1..0. .0..0..0..0..0. .0..0..0..0..1. .1..1..1..1..1

..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .1..1..1..0..1

CROSSREFS

Cf. A316420.

Sequence in context: A154877 A305337 A322344 * A100999 A304923 A306163

Adjacent sequences:  A316414 A316415 A316416 * A316418 A316419 A316420

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jul 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 10:48 EDT 2019. Contains 323443 sequences. (Running on oeis4.)