login
A316411
Number of multisets of exactly ten nonempty binary words with a total of n letters such that no word has a majority of 0's.
2
1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45750, 120655, 314335, 812161, 2078985, 5283157, 13326283, 33400066, 83195864, 206069915, 507722068, 1244740868, 3037497201, 7379529734, 17854498058, 43026654989, 103302756909, 247127149283, 589196413579
OFFSET
10,2
LINKS
FORMULA
a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^j)^A027306(j).
MAPLE
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 11)
end:
a:= n-> coeff(b(n$2), x, 10):
seq(a(n), n=10..38);
CROSSREFS
Column k=10 of A292506.
Sequence in context: A316408 A316409 A316410 * A292549 A062454 A121523
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 02 2018
STATUS
approved