login
A316410
Number of multisets of exactly nine nonempty binary words with a total of n letters such that no word has a majority of 0's.
2
1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45684, 120435, 313280, 808581, 2065885, 5241557, 13191343, 32992806, 81964072, 202499115, 497418503, 1215823396, 2956890329, 7159215090, 17256728038, 41428552721, 99060756883, 235997525351, 560191343126
OFFSET
9,2
LINKS
FORMULA
a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^j)^A027306(j).
MAPLE
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 10)
end:
a:= n-> coeff(b(n$2), x, 9):
seq(a(n), n=9..37);
CROSSREFS
Column k=9 of A292506.
Sequence in context: A316407 A316408 A316409 * A316411 A292549 A062454
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 02 2018
STATUS
approved