|
|
A316347
|
|
a(n) = n^2 mod(10^m), where m is the number of digits in n (written in base 10).
|
|
1
|
|
|
0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The set of the terms is the same as that of A238712.
|
|
LINKS
|
Georg Fischer, Table of n, a(n) for n = 0..10000, Jan 16 2019 (terms a(0..719585) initially submitted by Christopher D Chamness).
|
|
EXAMPLE
|
n = 13 has 2 digits in base 10, thus a(13) = 169 mod 100 = 69.
|
|
PROG
|
(Python)
i=1
while True:
m=i
j=i**2
l=0
while True:
m=m/10
l+=1
if m==0:
break
mod_num = 10**l
print j%mod_num
i+=1
(PARI) a(n) = n^2 % 10 ^ #digits(n) \\ David A. Corneth, Jun 30 2018
(Perl) my $mod = 10;
foreach my $i(0..10000) {
print "$i " . (($i * $i) % $mod) . "\n";
if (length($i + 1) > length($i)) { $mod *= 10; }
} # Georg Fischer, Jan 16 2019
|
|
CROSSREFS
|
Cf. A238712.
Sequence in context: A200632 A186723 A008959 * A169917 A059729 A184988
Adjacent sequences: A316344 A316345 A316346 * A316348 A316349 A316350
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Christopher D Chamness, Jun 29 2018
|
|
STATUS
|
approved
|
|
|
|