

A316262


Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.


0



4, 6, 8, 10, 14, 15, 20, 21, 24, 25, 26, 30, 35, 36, 39, 40, 45, 46, 50, 52, 54, 55, 56, 62, 65, 66, 68, 69, 72, 76, 78, 82, 84, 88, 90, 91, 92, 93, 94, 98, 102, 104, 108, 114, 117, 118, 120, 124, 126, 130, 132, 134, 136, 140, 141, 143, 144, 146, 147, 150
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..60.


EXAMPLE

2 divides both 4 and floor(phi*4)=6, so 4 is a term.


MAPLE

select(n>gcd(n, floor(((sqrt(5)1)/2)*n))>1, [$1..160]); # Muniru A Asiru, Jun 28 2018


MATHEMATICA

Select[Range[150], GCD[#, Floor[GoldenRatio #]] > 1 &] (* Giovanni Resta, Jun 28 2018 *)


PROG

(PARI) is(n) = gcd(n, floor((sqrt(5)1)/2*n)) > 1 \\ Felix FrÃ¶hlich, Jun 29 2018


CROSSREFS

Cf. A000201, A001622.
Sequence in context: A310660 A031020 A087270 * A075124 A067315 A069148
Adjacent sequences: A316259 A316260 A316261 * A316263 A316264 A316265


KEYWORD

nonn


AUTHOR

David V. Feldman, Jun 27 2018


STATUS

approved



