This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316138 Decimal expansion of the middle x such that 1/x + 1/(x+2) + 1/(x+4) = 1. 4
 1, 2, 8, 9, 1, 6, 8, 5, 4, 6, 4, 4, 8, 3, 0, 9, 9, 6, 9, 0, 8, 2, 6, 7, 7, 4, 5, 8, 1, 6, 8, 5, 6, 7, 3, 8, 8, 1, 4, 2, 9, 0, 2, 2, 0, 2, 8, 4, 2, 7, 3, 8, 3, 4, 3, 7, 2, 9, 4, 7, 0, 0, 6, 3, 0, 1, 3, 5, 6, 4, 6, 4, 8, 4, 0, 4, 3, 7, 4, 4, 7, 4, 1, 8, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, the middle root of x^3 + 3*x^2 - 4*x - 8; Least root: A316137 Middle root: A316138; Greatest root: A316139. See A305328 for a guide to related sequences. LINKS FORMULA greatest root: -1 + 2 sqrt[7/3] cos[1/3 arctan[(2 sqrt[79/3])/3]] middle: -1 - sqrt[7/3] cos[1/3 arctan[(2 sqrt[79/3])/3]] + sqrt[7] sin[1/3 arctan[(2 sqrt[79/3])/3]] least: -1 - sqrt[7/3] cos[1/3 arctan[(2 sqrt[79/3])/3]] - sqrt[7] sin[1/3 arctan[(2 sqrt[79/3])/3]] EXAMPLE greatest root: 1.7784571182583887319... middle root: -1.2891685464483099691... least root: -3.4892885718100787628... MATHEMATICA a = 1; b = 1; c = 1; u = 0; v = 2; w = 4; d = 1; r[x_] := a/(x + u) + b/(x + v) + c/(x + w); t = x /. ComplexExpand[Solve[r[x] == d, x]] N[t, 20] u = N[t, 200]; RealDigits[u[[1]]]  (* A316137, least *) RealDigits[u[[2]]]  (* A316138, middle *) RealDigits[u[[3]]]  (* A316139, greatest *) CROSSREFS Cf. A305328, A316137, A316139. Sequence in context: A152748 A158933 A200502 * A011062 A155922 A201896 Adjacent sequences:  A316135 A316136 A316137 * A316139 A316140 A316141 KEYWORD nonn,cons AUTHOR Clark Kimberling, Jul 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 18:54 EDT 2019. Contains 328308 sequences. (Running on oeis4.)