%I #4 Jun 24 2018 16:41:51
%S 2,45,197,1112,6562,36480,204465,1170851,6622412,37527145,213051804,
%T 1207987372,6850738403,38858760572,220384969476,1249936673191,
%U 7089251093164,40207467076807,228041955210057,1293371442017860
%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A316130.
%H R. H. Hardin, <a href="/A316126/b316126.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A316126/a316126.txt">Empirical recurrence of order 67</a>
%F Empirical recurrence of order 67 (see link above)
%e Some solutions for n=5
%e ..0..1..0..0. .0..0..0..1. .0..0..0..0. .0..1..1..0. .0..1..1..1
%e ..1..1..0..1. .0..1..0..1. .1..0..1..1. .0..1..1..0. .1..0..1..0
%e ..1..1..1..1. .0..1..1..0. .0..0..1..1. .0..0..0..0. .1..0..0..0
%e ..0..1..1..1. .0..1..0..1. .1..1..0..1. .0..0..1..0. .1..0..1..0
%e ..1..1..0..1. .0..0..0..1. .0..1..0..0. .0..1..1..0. .1..1..1..1
%Y Cf. A316130.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 24 2018