

A316111


a(n) is the smallest k > 1 such that gcd(k, n^k  n) = 1, for n > 1.


1



35, 35, 77, 77, 143, 55, 55, 77, 119, 119, 35, 55, 187, 143, 77, 35, 35, 77, 143, 247, 95, 35, 77, 77, 77, 55, 55, 143, 77, 77, 35, 35, 247, 143, 143, 35, 35, 77, 77, 143, 55, 95, 119, 119, 77, 35, 55, 143, 143, 77, 35, 35, 119, 299, 221, 55, 35, 77, 77, 77, 55, 55, 187, 119
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Conjecture: all the terms are in A121707. If k is a term, then k is an "antiCarmichael number": p1 does not divide k1 for every prime p dividing k.
The sequence is unbounded, since a(m!) > m.
Prediction: a(n) < n for all sufficiently large n.
GCD(n, a(n)) = 1. a(n) is odd. Is a(n) squarefree?  David A. Corneth, Aug 13 2018


LINKS

Table of n, a(n) for n=2..65.


PROG

(PARI) a(n) = {my(k=2); while (gcd(k, n^k  n) != 1, k++); k; } \\ Michel Marcus, Aug 13 2018
(PARI) a(n) = {my(k=3); while (gcd(k, n^k  n) != 1, k+=2; while(gcd(n, k) > 1, k+=2)); k} \\ David A. Corneth, Aug 13 2018


CROSSREFS

Cf. A121707, A267999.
Sequence in context: A291654 A257948 A142728 * A316348 A146205 A201067
Adjacent sequences: A316108 A316109 A316110 * A316112 A316113 A316114


KEYWORD

nonn


AUTHOR

Thomas Ordowski, Aug 13 2018


EXTENSIONS

More terms from Michel Marcus, Aug 13 2018


STATUS

approved



