login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals. 14
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 3, 3, 1, 0, 1, 1, 1, 4, 6, 6, 1, 0, 1, 1, 1, 5, 10, 16, 12, 1, 0, 1, 1, 1, 6, 15, 32, 43, 25, 1, 0, 1, 1, 1, 7, 21, 55, 105, 120, 52, 1, 0, 1, 1, 1, 8, 28, 86, 210, 356, 339, 113, 1, 0, 1, 1, 1, 9, 36, 126, 371, 826, 1227, 985, 247, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,20

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

EXAMPLE

Square array A(n,k) begins:

  0,  0,   0,   0,   0,    0,    0,    0,    0, ...

  1,  1,   1,   1,   1,    1,    1,    1,    1, ...

  1,  1,   1,   1,   1,    1,    1,    1,    1, ...

  1,  1,   1,   1,   1,    1,    1,    1,    1, ...

  1,  2,   3,   4,   5,    6,    7,    8,    9, ...

  1,  3,   6,  10,  15,   21,   28,   36,   45, ...

  1,  6,  16,  32,  55,   86,  126,  176,  237, ...

  1, 12,  43, 105, 210,  371,  602,  918, 1335, ...

  1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ...

MAPLE

wtr:= proc(p) local b; b:= proc(n, i) option remember;

       `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)*

         b(n-i*j, i-1), j=0..n/i))) end: j-> b(j$2)

      end:

g:= proc(k) option remember; local b, t; b[0]:= j->

     `if`(j<2, j, b[k](j-1)); for t to k do

       b[t]:= wtr(b[t-1]) od: eval(b[0])

    end:

A:= (n, k)-> g(k)(n):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&];

g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]];

A[n_, k_] := g[k][n];

Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, Jul 10 2018, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A057427, A004111, A007561, A316103, A316104, A316105, A316106, A316107, A316108, A316109, A316110.

Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465.

Main diagonal gives A316102.

Cf. A144042, A316074.

Sequence in context: A273693 A219967 A060505 * A211452 A035188 A066295

Adjacent sequences:  A316098 A316099 A316100 * A316102 A316103 A316104

KEYWORD

nonn,tabl,eigen

AUTHOR

Alois P. Heinz, Jun 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 20:48 EST 2019. Contains 329909 sequences. (Running on oeis4.)