%I #7 Oct 21 2023 15:11:08
%S 1,6,10,15,20,26,31,36,42,47,52,56,62,68,72,77,82,88,93,98,104,109,
%T 114,118,124,130,134,139,144,150,155,160,166,171,176,180,186,192,196,
%U 201,206,212,217,222,228,233,238,242,248,254
%N Coordination sequence Gal.6.205.3 where Gal.u.t.v denotes the coordination sequence for a vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
%C Note that there may be other vertices in the Galebach list of u-uniform tilings with u <= 6 that have this same coordination sequence. See the Galebach link for the complete list of A-numbers for all these tilings.
%H Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a>
%F Conjectures from _Chai Wah Wu_, Mar 29 2023: (Start)
%F a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - a(n-12) for n > 12.
%F G.f.: (x^12 + 4*x^11 + 5*x^9 + 6*x^7 - x^6 + 6*x^5 + 5*x^3 + 4*x + 1)/((x - 1)^2*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)). (End)
%K nonn
%O 0,2
%A _Brian Galebach_ and _N. J. A. Sloane_, Jun 18 2018